屋子里。
看着一脸懊恼的小牛,徐云的心中却不由充满了感慨:
虽然这位的人品实在拉胯,但他的脑子实在是太顶了!
看看他提到的内容吧:
微积分就不说了,还提到了法向量的概念、势能的概念、净力矩的概念以及小形变的假设的假设。
以上这几个概念有一个算一个,正式被以理论公开,最早都要在1807年之后。
这种150年到200年的思维跨度...敢问谁能做到?
诚然。
胡克提出来的问题其实很简单,简单到徐云第一时间想到的解法就接近了二十种,最快捷的方法只要立个非笛卡尔坐标系上个共变导数就能解决。
但别忘了,徐云的知识是通过后世学习得到的,那时候的基础理论已经被归纳的相当完善了。
就像掌握了可控核聚变的时代,闭着眼睛都能搞出个200cc的发动机。
但小牛呢?
他属于在钻木取火的时代,目光却看到了内燃机的十六烷值计算式那么离谱!
想到这,徐云心中莫名有些想笑:
他曾经写过一本小说,结果别说牛顿了,连麦克斯韦都被一些评论diss成了‘查了一下,不过一个方程组而已’。
随后他深吸一口气,将心思转回了现场:
“牛顿先生,您的这个思路我非常认可,但是需要用到的未知数学工具有些多,以目前数学界的研究进度似乎有点乏力......”
小牛点点头,大方的承认了这一点:
“没错,但除此以外,就必须要用到你说的韩立展开了。”
说完小牛继续低下头,飞快的又列出了一行式子:
V(r)=V(re)+V’(re)(r-e)+[V’’(re)2!](r-re)^2+[V’’’(re)3!](r-re)^3......
接着小牛在这行公式下划了一行线,皱眉道:
“如果使用韩立展开的话,弹球在稳定位置附近的性质又该是什么?这应该是一个级数,但划分起来却又是一个问题。”
徐云抬头看了他一眼,说道:
“牛顿先生,如果把稳定位置当成极小值来计算呢?
我们假设有一个数学上的迫近姿态,也就是......无限趋近于0”
“无限趋近于0?”
不知为何,小牛的心中忽然冒出了一股有些古怪的情绪,就像是看到莉莎和别人挽着手从卧室里出来了一样。
不过很快他便将这股情绪抛之脑后,思索了一番道:
();() “那不就是割圆法的道理吗?”
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
九公主攻略全书男女老少 亮剑之独立大队 大梁最强太子 他失忆了,他好难追 LOL:锦鲤哥别秀了! 长生从散修开始 无忧归田 选择修仙人生,系统却让我打工? 霸道少帅的宠爱 冥婚使者 穿越:从妖国开始调教诸天 旧梦人间 陆总裁是宠妻狂魔 王妃她不讲武德 和总裁大人闪婚后 替嫁娇妻:偏执总裁轻点宠 闪婚老公摇身一变成财阀大佬 异能狂妃撩美男 崛起:从输掉美娇妻开始 我闪婚的禁欲老公,竟是财阀大佬
穿越到自己写的书里,换做任何人都会欣喜若狂,可温亦谦却有点慌。早知道我就不写黑暗文了,随便出个门都能遇到几个变态杀人狂,这谁顶得住啊s黑暗风,沙雕向。...
红尘官路最新章节列小说红尘官路气欲难量著红尘官路全文阅读红尘官路是气欲难量写的都市生活类小说破案做官,手起刀落赚钱收美,肆无忌惮。官场军界,牛气冲天都市地下,显尽风流。看异界...
...
逛个街都能穿越,人家穿越不是公主就是小姐,偏我穿到一个小农女身上。好不容易带着全家奔小康,却意外救回个跟屁虫,看在你长的不赖的份上先收留一阵子。某男这次我帮了你,你要拿什么来偿还我某...
池夏觉得,时空管理局投放人员的智商和脐带,肯定是一起剪断了。不然,怎么会将明明该去退休养老的她,投放回了末世还是那个她曾今为了快速完成任务,三言两语就将男主伤到黑化,又推入丧尸群的世界。来都来了,...
她曾经历了长平之战,鉴证了数十万人的坑杀。她曾率领大秦铁骑,与六国逐鹿天下。她见过天下三分,山河破碎。也听过那袅袅的隆中琴音。贞观盛世她曾一醉今朝,那千古女帝又是如何芳华?她鲜衣怒马过,也曾羽扇纶巾。做过田舍农,也为过教书生。却没人知道,这么一个人,活了两千年。嘛,比较轻松悠哉的历史文吧,因为个人原因可能并不能做到完全符合历史,经得起考证。但我会尽力查全资料来写的。第一次写这种文章,我还是希望写的有趣一些,哈哈。最后,变身慎入哈。...